Topological Groups of Kac-moody Type, Fuchsian Twinnings and Their Lattices
نویسندگان
چکیده
— This paper deals with a class of totally disconnected groups acting on buildings, among which are certain Kac-Moody groups. The apartments of our buildings are hyperbolic planes tiled by right-angled polygons. We discuss linearity properties for the groups, as well as an analogy with semisimple groups over local fields of positive characteristic. Looking for counter-examples to this analogy leads to the construction of Moufang twinnings 〈〈with several ground fields 〉〉 .
منابع مشابه
Topological simplicity, commensurator super-rigidity and non-linearities of Kac-Moody groups Appendix by P. Bonvin: Strong boundaries and commensurator super-rigidity
— We provide new arguments to see topological Kac-Moody groups as generalized semisimple groups over local fields: they are products of topologically simple groups and their Iwahori subgroups are the normalizers of the pro-p Sylow subgroups. We use a dynamical characterization of parabolic subgroups to prove that some countable Kac-Moody groups with Fuchsian buildings are not linear. We show fo...
متن کاملGolod-shafarevich Groups with Property (t ) and Kac-moody Groups
We construct Golod-Shafarevich groups with property (T ) and thus provide counterexamples to a conjecture stated in a recent paper of Zelmanov [Ze2]. Explicit examples of such groups are given by lattices in certain topological Kac-Moody groups over finite fields. We provide several applications of this result including examples of residually finite torsion non-amenable groups.
متن کاملLattices in Kac - Moody Groups
Initially, we set out to construct non-uniform ‘arithmetic’ lattices in Kac-Moody groups of rank 2 over finite fields, as constructed by Tits ([Ti1], [Ti2]) using the BruhatTits tree of a Tits system for such groups. This attempt succeeded, and in fact, the construction we used can be applied to higher rank Kac-Moody groups over sufficiently large finite fields, and their buildings (Theorem 1.7...
متن کاملCocompact Lattices of Minimal Covolume in Rank 2 Kac–moody Groups, Part Ii
Let G be a topological Kac–Moody group of rank 2 with symmetric Cartan matrix, defined over a finite field Fq . An example is G = SL(2,Fq((t−1))). We determine a positive lower bound on the covolumes of cocompact lattices in G, and construct a cocompact lattice Γ0 < G which realises this minimum. This completes the work begun in Part I, which considered the cases when G admits an edge-transitiv...
متن کاملInfinite Descending Chains of Cocompact Lattices in Kac-moody Groups
Let A be a symmetrizable affine or hyperbolic generalized Cartan matrix. Let G be a locally compact Kac-Moody group associated to A over a finite field Fq. We suppose that G has type ∞, that is, the Weyl group W of G is a free product of Z/2Z’s. This includes all locally compact Kac-Moody groups of rank 2 and three possible locally compact rank 3 Kac-Moody groups of noncompact hyperbolic type. ...
متن کامل